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ABSTRACT 
In order to survive in the present day global competitive environment, it now becomes essential for the 

manufacturing organizations to take prompt and correct decisions regarding effective use of their scarce 

resources. The content of this paper to promote the wider understanding and application of statistical methods 

for manufacturing decision making problems under uncertainty conditions. It is important for managers to know 

the statistical techniques that can be applied in industry and the ways in which these techniques can help them in 

their decision making. The aims of the study are the managers make decisions using Statistics. This paper will 

provide you with hands-on experience to promote the use of statistical thinking and techniques to apply them to 

make educated decisions, whenever you encounter variation in business data. 

 

I. INTRODUCTION 
Everyone is needed to be familiar with the Decision Making Process. We all rely on information, and 

techniques or tools, to help us in our daily lives. Operating a business also requires making decisions using 

information and techniques - how much inventory to maintain, what price to sell it at, what credit arrangements 

to offer, how many people to hire. 

 
Manufacturing can be defined as the application of mechanical, physical and chemical processes to modify the 

geometry, properties and/or appearance of a given input material while making a new finished part/product. The 

type of manufacturing performed by an organization largely depends on the end product it produces. In the 

modern sense, manufacturing includes various interrelated activities, like product design, material selection, 

process planning, machine selection, maintenance planning and documentation, quality assurance, management 

and marketing of products (Rao, 2007). Today’s manufacturing  processes are caught between the growing 

needs for quality, high process safety, minimal manufacturing costs and short manufacturing times. In order to 

meet these demands, manufacturing processes need to be chosen in the best possible way. Selection of the 

manufacturing processes and optimal process parameter settings plays a pivotal role to ensure high quality of 

products, reduce manufacturing costs, trim down lead times and inventory levels, and increase the overall 

productivity of the manufacturing organizations. Decision makers in the manufacturing sector frequently face 

the problem of assessing a wide range of alternative options and selecting the best on e based on a set of 

conflicting criteria. It must be noted that in choosing the most appropriate alternative, there is not always a 

single definite criterion of selection, and the decision makers have to take into account a large number of 

criteria. Thus, there is a need for some simple, systematic and logical methods or mathematical tools to guide 

the decision makers in considering a number of conflicting selection criteria and their interrelations. The 

objective of any selection procedure is to identify the suitable evaluation criteria and obtain the most appropriate 

combination of criteria in conjunction with the real requirement. Thus, efforts need to be extended to identify 

those criteria that influence the best alternative selection for a given problem, using simple and logical methods, 

to eliminate the unsuitable alternatives, and select the most appropriate one to strengthen the existing selection 

procedures. In order to deal with those complex selection problems arising in the modern day manufacturing 

environment, various statistical tools that can be applied in manufacturing industries to reduce the uncertainty in 

decision making process.Today's good decisions are driven by data. In all aspects of our lives, and importantly 

in the business context, an amazing diversity of data is available for inspection and enlightenment. Moreover, 

business managers and professionals are increasingly encouraged to justify decisions on the basis of data.  
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II. STATISTICAL MODELING FOR DECISION-MAKING UNDER UNCERTAINTIES 
Data must be collected according to a well-developed plan if valid information on a conjecture is to be obtained. 

The plan must identify important variables related to the conjecture, and specify how they are to be measured 

from the data collection plan, a statistical model can be formulated from which inferences can be drawn.  

 

Data is known to be crude information and not knowledge by itself. The sequence from data to knowledge is: 

from Data to Information, from Information to Facts, and finally, from Facts to Knowledge. Data becomes 

information, when it becomes relevant to your decision problem. Information becomes fact, when the data can 

support it. Facts are what the data reveals. However the decisive instrumental (i.e., applied) knowledge is 

expressed together with some statistical degree of confidence. Fact becomes knowledge, when it is used in the 

successful completion of a decision process. Considering the uncertain environment, the chance that "good 

decisions" are made increases with the availability of "good information." The chance that "good information" is 

available increases with the level of structuring the process of Knowledge Management. The above figure also 

illustrates the fact that as the exactness of a statistical model increases, the level of improvements in decision-

making increases. 

 

Statistical Decision-Making Process  

Unlike the deterministic decision-making process, such as linear optimization by solving systems of equations, 

Parametric systems of equations and in decision making under pure uncertainty, the variables are often more 

numerous and more difficult to measure and control. However, the steps are the same. They are: 

1. Simplification  

2. Building a decision model  

3. Testing the model  

4. Using the model to find the solution:  

5. It can be used again and again for similar problems or can be modified.  

 

Statistical methodology 

Statistics is the mathematical science involving the collection, analysis and interpretation of data. A number of 

specialties have evolved to apply statistical theory and methods to various disciplines. Certain topics have 

"statistical" in their name but relate to manipulations of probability distributions rather than to statistical analysis 

 

III. SAMPLING METHODS 
Following are important methods in sampling: 
 

Cluster sampling 
With cluster sampling, every member of the population is assigned to one, and only one, group. Each group is 

called a cluster. A sample of clusters is chosen, using a probability method (often simple random sampling). 

Only individuals within sampled clusters are surveyed. 

 

Stratified sampling  
It can be used whenever the population can be partitioned into smaller sub-populations, each of which is 

homogeneous according to the particular characteristic of interest.  

 

Random sampling  
It is probably the most popular sampling method used in decision making today. Many decisions are made, for 

instance, by choosing a number out of a hat or a numbered bead from a barrel, and both of these methods are 

attempts to achieve a random choice from a set of items. But true random sampling must be achieved with the 

aid of a computer or a random number table whose values are generated by computer random number 

generators.  

 

Mean: The arithmetic mean (or the average, simple mean) is computed by summing all numbers in an array of 

numbers (xi) and then dividing by the number of observations (n) in the array.  

Mean = Xi /n,     the sum is over all i's.  

 

The mean uses all of the observations, and each observation affects the mean. The mean has valuable 

mathematical properties that make it convenient for use with inferential statistical analysis.  
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Weighted Mean: In some cases, the data in the sample or population should not be weighted equally, rather 

each value should be weighted according to its importance.  

 

Median: The median is the middle value in an ordered array of observations. The median is often used to 

summarize the distribution of an outcome. Note that if the median is less than the mean, the data set is skewed to 

the right. If the median is greater than the mean, the data set is skewed to the left.  

 

The mean has two distinct advantages over the median. It is more stable, and one can compute the mean based 

of two samples by combining the two means.  

 

Mode: The mode is the most frequently occurring value in a set of observations. When the mean and the median 

are known, it is possible to estimate the mode for the unimodal distribution using the other two averages as 

follows:  

                                                          Mode = 3(median) - 2(mean)  

 

This estimate is applicable to both grouped and ungrouped data sets.  

 

IV. SHAPE OF A DISTRIBUTION FUNCTION 
 

The Skewness-Kurtosis Chart 

Skewness: It is a measure of the degree to which the sample population deviates from symmetry with the mean 

at the center. Skewness will take on a value of zero when the distribution is a symmetrical curve. A positive 

value indicates the observations are clustered more to the left of the mean with most of the extreme values to the 

right of the mean. A negative skewness indicates clustering to the right.. The reverse order holds for the 

observations with positive skewness.  

 

Kurtosis: Kurtosis is a measure of the relative peakedness of the curve defined by the distribution of the 

observations. Standard normal distribution has kurtosis of +3. A kurtosis larger than 3 indicates the distribution 

is more peaked than the standard normal distribution. A value of less than 3 for kurtosis indicates that the 

distribution is flatter than the standard normal distribution.  

 

These inequalities hold for any probability distribution having finite skewness and kurtosis.  

In the Skewness-Kurtosis Chart, you notice two useful families of distributions, namely the beta and gamma 

families. 

 

V. MEASURING THE QUALITY OF A SAMPLE  
Average by itself is not a good indication of quality. You need to know the variance to make any educated 

assessment.  

 

Statistical measures are often used for describing the nature and extent of differences among the information in 

the distribution. A measure of variability is generally reported together with a measure of central tendency.  

Remember, quality of information and variation is inversely related. The larger the variation in the data, the 

lower the quality of the data. The four most common measures of variation are the range, variance, standard 

deviation, and coefficient of variation. 

 
Range: The range of a set of observations is the absolute value of the difference between the largest and 

smallest values in the data set. It is not useful when extreme values are present. It is based solely on two values, 

not on the entire data set. In addition, it cannot be defined for open-ended distributions such as Normal 

distribution.  

 

Notice that, when dealing with discrete random observations, some authors define the range as: 

Range = Largest value - Smallest value + 1.  
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Quartiles: When we order the data, for example in ascending order, we may divide the data into quarters, 

known as quartiles. The first Quartile (Q1) is that value where 25% of the values are smaller and 75% are larger. 

The second Quartile (Q2) is that value where 50% of the values are smaller and 50% are larger. The third 

Quartile (Q3) is that value where 75% of the values are smaller and 25% are larger.  

 

Percentiles: Percentiles have a similar concept and therefore, are related; e.g., the 25th percentile corresponds to 

the first quartile Q1, etc. The advantage of percentiles is that they may be subdivided into 100 parts. The 

percentiles and quartiles are most conveniently read from a cumulative distribution function. 

 

Interquartiles Range: The interquartile range (IQR) describes the extent for which the middle 50% of the 

observations scattered or dispersed. It is the distance between the first and the third quartiles:  

IQR = Q3 - Q1,  

 

which is twice the Quartile Deviation. For data that are skewed, the relative dispersion, similar to the coefficient 

of variation (C.V.) is given (provided the denominator is not zero) by the Coefficient of Quartile Variation:  

CQV = (Q3-Q1) / (Q3 + Q1).  

 

Variance: An important measure of variability is variance. Variance is the average of the squared deviations of 

each observation in the set from the arithmetic mean of all of the observations.  

Population variance =   

 

Sample variance =   

The variance is a measure of spread or dispersion among values in a data set. Therefore, the greater the variance, 

the lower the quality.  

 

The variance is not expressed in the same units as the observations.  

 

Standard Deviation: Both variance and standard deviation provide the same information; one can always be 

obtained from the other. In other words, the process of computing a standard deviation always involves 

computing a variance. Since standard deviation is the square root of the variance, it is always expressed in the 

same units as the raw data:  

Standard Deviation = S = (Variance) Â½ 

 

For large data sets (say, more than 30), approximately 68% of the data are contained within one standard 

deviation of the mean, 95% contained within two standard deviations. 97.7% (or almost 100% ) of the data are 

contained within within three standard deviations (S) from the mean.  

 

VI. HYPOTHESIS TESTING 
A hypothesis, in statistics, is a statement about a population where this statement typically is represented by 

some specific numerical value.  In testing a hypothesis, we use a method where we gather data in an effort to 

gather evidence about the hypothesis.  In hypothesis testing there are certain steps one must follow.   

 

1. Setting up two competing hypotheses - Each hypothesis test includes two hypothesis about the 

population.  One is the null hypothesis, notated as Ho, which is a statement of a particular parameter 

value.  This hypothesis is assumed to be true until there is evidence to suggest otherwise.  The second 

hypothesis is called the alternative, or research, hypothesis, notated as Ha.  The alternative hypothesis is 

a statement of a range of alternative values in which the parameter may fall.   

2. Set some level of significance called alpha.  This value is used as a probability cutoff for making 

decisions about the null hypothesis. The most common alpha value is 0.05  or 5%. Other popular 

choices are 0.01 (1%) and  0.1 (10%). 

3. Calculate a test statistic. Gather sample data and calculate a test statistic where the sample statistic is 

compared to the parameter value.  The test statistic is calculated under the assumption the null 

hypothesis is true, and incorporates a measure of standard error and assumptions (conditions) related to 
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the sampling distribution.  Such assumptions could be normality of data, independence, and number of 

success and failure outcomes. 

4. Calculate probability value (p-value), or find rejection region - A p-value is found by using the test 

statistic to calculate the probability of the sample data producing such a test statistic or one more 

extreme.  The rejection region is found by using alpha to find a critical value; the rejection region is the 

area that is more extreme than the critical value. 

5. Make a test decision about the null hypothesis - In this step we decide to either reject the null 

hypothesis or decide to fail to reject the null hypothesis.  Notice we do not make a decision where we 

will accept the null hypothesis.  

6. State an overall conclusion - Once we have found the p-value or rejection region, and made a 

statistical decision about the null hypothesis (i.e. we will reject the null or fail to reject the null).  

Following this decision, we want to summarize our results into an overall conclusion for our test. 

 

VII. LARGE SAMPLE TESTS FOR A POPULATION MEAN 
 

Assumptions 

1. Sample is randomly selected 

2. Sample is large (n > 30) Central Limit theorem applies 

3. If  is unknown, we can use sample standard deviation s as estimate for  . 

 

Goal 
Identify a sample result that is significantly different from the claimed value; in this case, is our sample mean 

statistically different from the claimed null hypothesis mean? 

 

Steps 

1. Identify the null hypothesis (specific claim to be tested)     H0 : μ = μ0 

2. Identify the alternative hypothesis that must be true when the original claim is false.  

One-tailed test       two -tailed test 

Ha: μ                                                   or                                        Ha: μμ0  

3. Calculate the test statistic: 

                            
1. Select the significant level   based on the seriousness of a type I error. The values of 0.05 and 0.01 are 

very common. 

2. Reject H0 if the test statistic is in the critical region. Fail to reject H0 if the test statistic is not in the critical 

region. 

 

Hypothesis Testing Of The Difference Between Two Population Means 

This is a two sample z test which is used to determine if two population means are equal or unequal.  There are 

three possibilities for formulating hypotheses. 

 

  H0 = µ1= µ2                                      Ha :       µ1 ≠ µ2 

 H0 :: µ1 ≥ µ2      Ha :       µ1 <  µ2   

 H0 :: µ1 ≤ µ2      Ha :   µ1 > µ2 

 

The same procedure is used in three different situations 

 Sampling is from normally distributed populations with known variances 

     
Tests with One Sample, Dichotomous Outcome  

Hypothesis testing applications with a dichotomous outcome variable in a single population are also performed 

according to the five-step procedure. Similar to tests for means, a key component is setting up the null and 
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research hypotheses. The objective is to compare the proportion of successes in a single population to a known 

proportion (p0).  

 

In one sample tests for a dichotomous outcome, we set up our hypotheses against an appropriate comparator. 

We select a sample and compute descriptive statistics on the sample data.  

      
We then determine the appropriate test statistic (Step 2) for the hypothesis test. The formula for the test statistic 

is given below. 

Test Statistic for Testing H0: p = p 0 

if min(np0 , n(1-p0))> 5 

     
 

The formula above is appropriate for large samples, defined when the smaller of np0 and n(1-p0) is at least 5. 

This is similar, but not identical, to the condition required for appropriate use of the confidence interval formula 

for a population proportion, i.e., 

                                     
 

Here we use the proportion specified in the null hypothesis as the true proportion of successes rather than the 

sample proportion. If we fail to satisfy the condition, then alternative procedures, called exact methods must be 

used to test the hypothesis about the population proportion 

 

Tests with Two Independent Samples, Continuous Outcome 

There are many applications where it is of interest to compare two independent groups with respect to their 

mean scores on a continuous outcome. Here we compare means between groups, but rather than generating an 

estimate of the difference, we will test whether the observed difference (increase, decrease or difference) is 

statistically significant or not. Remember, that hypothesis testing gives an assessment of statistical significance, 

whereas estimation gives an estimate of effect and both are important. 

for sample 1: 

 n1          s1 

for sample 2: 

 n2    s2 

 

In the two independent samples s1and s2 application with a continuous outcome, the parameter of interest in the 

test of hypothesis is the difference in population means, μ1-μ2. The null hypothesis is always that there is no 

difference between groups with respect to means, i.e., 

 
 

The null hypothesis can also be written as follows: H0: μ1 = μ2. In the research hypothesis, an investigator can 

hypothesize that the first mean is larger than the second (H1: μ1 > μ2 ), that the first mean is smaller than the 

second (H1: μ1 < μ2 ), or that the means are different (H1: μ1 ≠ μ2 ). The three different alternatives represent 

upper-, lower-, and two-tailed tests, respectively. The following test statistics are used to test these hypotheses. 

 

Test Statistics for Testing H0: μ1 = μ2 

 if n1 > 30 and n2 > 30 

 
 if n1 < 30 or n2 < 30 
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where df =n1+n2-2. 

 

NOTE: The formulas above assume equal variability in the two populations (i.e., the population variances are 

equal, or s1
2 = s2

2). This means that the outcome is equally variable in each of the comparison populations.   The 

test statistics include Sp, which is the pooled estimate of the common standard deviation (again assuming that 

the variances in the populations are similar) computed as the weighted average of the standard deviations in the 

samples as follows: 

  

 

Because we are assuming equal variances between groups, we pool the information on variability (sample 

variances) to generate an estimate of the variability in the population. 

 

Tests with Matched Samples, Continuous Outcome 

The two comparison groups are said to be dependent, and the data can arise from a single sample of participants 

where each participant is measured twice (possibly before and after an intervention) or from two samples that 

are matched on specific characteristics (e.g., siblings). When the samples are dependent, we focus on difference 

scores in each participant or between members of a pair and the test of hypothesis is based on the mean 

difference, μd. The null hypothesis again reflects "no difference" and is stated as H0: μd =0 . Note that there are 

some instances where it is of interest to test whether there is a difference of a particular magnitude (e.g., μd =5) 

but in most instances the null hypothesis reflects no difference (i.e., μd=0).   

 

The appropriate formula for the test of hypothesis depends on the sample size.  

 

Test Statistics for Testing H0: μd =0 

 if n > 30     

 
 if n < 30 

where df =n-1 

 

Tests with Two Independent Samples, Dichotomous Outcome 

Here we consider the situation where there are two independent comparison groups and the outcome of interest 

is dichotomous (e.g., success/failure). The goal of the analysis is to compare proportions of successes between 

the two groups. The relevant sample data are the sample sizes in each comparison group (n1 and n2) and the 

sample proportions (  ) which are computed by taking the ratios of the numbers of successes to the 

sample sizes in each group, i.e., 

                                                                        and  

 

In tests of hypothesis comparing proportions between two independent groups, one test is performed and results 

can be interpreted to apply to a risk difference, relative risk or odds ratio.  

 

Test Statistics for Testing H0: p 1 = p 
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Where  the proportion of successes in sample 1 is, is the proportion of successes in sample 2, and is 

the proportion of successes in the pooled sample. is computed by summing all of the successes and dividing 

by the total sample size, as follows: 

  

 

(this is similar to the pooled estimate of the standard deviation, Sp, used in two independent samples tests with a 

continuous outcome; just as Sp is in between s1 and s2, will be in between  and ). 

 

The formula above is appropriate for large samples, defined as at least 5 successes (np>5) and at least 5 failures 

(n(1-p>5)) in each of the two samples. If there are fewer than 5 successes or failures in either comparison group, 

then alternative procedures, called exact methods must be used to estimate the difference in population 

proportions. 

 

The Chi Square Statistic 

A chi square (X2) statistic is used to investigate whether distributions of categorical variables differ from one 

another. Basically categorical variable yield data in the categories and numerical variables yield data in 

numerical form. 

 

The chi-square test is a statistical test that can be used to determine whether observed frequencies are 

significantly different from expected frequencies. 

 

Chi-square is used most commonly to compare the incidence (or proportion) of a characteristic in one 

group to the incidence (or proportion) of a characteristic in other group(s). 

 
 

where fo = the observed frequency (the observed counts in the cells) 

and fe = the expected frequency if NO relationship existed between the variables 

 

VIII. ANOVA 
Analysis of variance (ANOVA) tests the hypothesis that the means of two or more populations are equal. 

ANOVAs assess the importance of one or more factors by comparing the response variable means at the 

different factor levels. The null hypothesis states that all population means (factor level means) are equal while 

the alternative hypothesis states that at least one is different.  

 

To perform an ANOVA, you must have a continuous response variable and at least one categorical factor with 

two or more levels. ANOVAs require data from approximately normally distributed populations with equal 

variances between factor levels 

 

ANOVA 

type 
Model and design properties 

One-way One fixed factor (levels set by investigator) which can have either an unequal (unbalanced) or 

equal (balanced) number of observations per treatment.  

Balanced Model may contain any number of fixed and random factors (levels are randomly selected), 

and crossed and nested factors, but requires a balanced design.  

General linear 

model 

Expands on Balanced ANOVAs by allowing unbalanced designs and covariates (continuous 

variables).  

 
The hypotheses of interest in an ANOVA are as follows: 

 H0: μ1 = μ2 = μ3 ... = μk 

 H1: Means are not all equal. 
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where k = the number of independent comparison groups. 

Test Statistic for ANOVA 

The test statistic for testing H0: μ1 = μ2 = ... =   μk is: 

 
 

and the critical value is found in a table of probability values for the F distribution with (degrees of freedom) df1 

= k-1, df2=N-k. The table can be found in "Other Resources" on the left side of the pages. 

 

In the test statistic, nj = the sample size in the jth group (e.g., j =1, 2, 3, and 4 when there are 4 comparison 

groups), is the sample mean in the jth group, and is the overall mean.  k represents the number of 

independent groups (in this example, k=4), and N represents the total number of observations in the analysis.  

NOTE: The test statistic F assumes equal variability in the k populations (i.e., the population variances are 

equal, or s1
2 = s2

2 = ... = sk
2 ). This means that the outcome is equally variable in each of the comparison 

populations. This assumption is the same as that assumed for appropriate use of the test statistic to test equality 

of two independent means. It is possible to assess the likelihood that the assumption of equal variances is true 

and the test can be conducted in most statistical computing packages. If the variability in the k comparison 

groups is not similar, then alternative techniques must be used. 

 

The decision rule for the F test in ANOVA is set up in a similar way to decision rules we established for t tests. 

The decision rule again depends on the level of significance and the degrees of freedom. The F statistic has two 

degrees of freedom. These are denoted df1 and df2, and called the numerator and denominator degrees of 

freedom, respectively. The degrees of freedom are defined as follows: 

                                                                     df1 = k-1 and df2=N-k, 

 

where k is the number of comparison groups and N is the total number of observations in the analysis.   If the 

null hypothesis is true, the between treatment variation (numerator) will not exceed the residual or error 

variation (denominator) and the F statistic will small. If the null hypothesis is false, then the F statistic will be 

large. 

 

The ANOVA Procedure 

Because the computation of the test statistic is involved, the computations are often organized in an ANOVA 

table. The ANOVA table breaks down the components of variation in the data into variation between treatments 

and error or residual variation. Statistical computing packages also produce ANOVA tables as part of their 

standard output for ANOVA, and the ANOVA table is set up as follows:  

 

Source of 

Variation 
Sums of Squares (SS) 

Degrees of 

Freedom (df) 

Mean Squares 

(MS) 
F 

Between 

Treatments 
 

k-1 
  

Error (or 

Residual) 
 

N-k 
 

 

Total 
 

N-1 
  

 

where   

 X = individual observation, 

 = sample mean of the jth treatment (or group), 
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 = overall sample mean, 

 k = the number of treatments or independent comparison groups, and 

 N = total number of observations or total sample size. 

 

IX. CONCLUSION 
In competitive environment, business managers must design quality into products, and into the processes of 

making the products. They must facilitate a process of never-ending improvement at all stages of manufacturing 

and service. This is a strategy that employs statistical methods, particularly statistically designed experiments, 

and produces processes that provide high yield and products that seldom fail. Moreover, it facilitates 

development of robust products that are insensitive to changes in the environment and internal component 

variation. Carefully planned statistical studies remove hindrances to high quality and productivity at every stage 

of production. This saves time and money. It is well recognized that quality must be engineered into products as 

early as possible in the design process. One must know how to use carefully planned, cost-effective statistical 

experiments to improve, optimize and make robust products and processes.. 
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